Phosphorus Release from the Biscayne Aquifer with Sea Level Rise

René Price

Department of Earth and Environment and Southeast Environmental Research Center Florida International University, Miami, FL

April 21, 2015

As Seawater intrudes into a coastal carbonate aquifer:

P is released due to:

CaCO₃ dissolution at salinities < 30 psu

Ion exchange with HCO₃⁻ at salinities 30-33 psu

At salinities >33 psu P was retained due to CaCO₃ precipitation

Price, et al., 2010, Applied Geochemistry, 25:1085–1091.

Price, et al., 2006, Hydrobiologia, 569:23-36.

How much P is incorporated in the Biscayne Aquifer, and in what form?

Selected 7 cores from the USGS

2 in freshwater portion 4 in seawater intrusion of the Biscayne Aquifer

Fitterman, J Environ Eng Geophysic, 2014, 19(1): 33-43.

METHODS

Rock core was collected every ~1.5 m (5 ft) Then sub-sampled into 6 pieces each 0.5 g.

METHODS Cont.

The amount of P was determined using a sequential extraction procedure developed by Ruttenberg (1992).

- 1. Loosely adsorbed P: MgCl Extract
- 2. Detrital apatite fractions of P: HCl Extract
- **3. Organic P:** Filtering the HCl extract and ashing the filters in a muffle furnace
- 4. Total P: Sum of all the fractions

RESULTS

Total P with Depth

G-3837		Water depth about 11 feet
Depth (ft)	Depth (m)	Lithofacies
5.35	1.76	Burrow-mottled ooid grainstone, Ophiomorpha size decreases upward
17.13	5.62	Burrow-mottled ooid grainstone, Ophiomorpha size decreases upward
25.75	8.45	SCHIZPORELLA-pelecypod rudstone w/burrowed, ooid grainstone matrix
27.90	9.15	Pedogenic limestone soil breccia
34.46	11.31	Burrowed wackestone w/sand filled burrows
38.84	12.74	Burrowed skeletal wackestone and grain/mud dominated packstone
41.68	13.67	Burrow mottled sandy mudstone/wackestone and skeletal quartz sandstone
46.85	15.37	Skeletal quartz sandstone
51.67	16.95	Sandy skeletalgrain dominated packstone/grainstone
59.10	19.39	Sandy pelecypod floatstone
65.50	21.49	Sandy skeletal, benthic FORAM grainstone and skeletal sandstone
69.25	22.72	Burrow mottled sandy grainstone and skeletal wackestone
76.80	25.20	Sandy mud/grain dominated skeletal packstone
80.45	26.39	Pelecypod, bryozoan, red alge, echinoid floatstone w/sandy skeletal grainstone/packstone matrix
87.50	28.71	Pelecypod floatstone w/sandy skeletal, benthic FORAM, red algal grainstone/packstone matrix
90.25	29.61	Sandy skeletal grainstone and grain dominated packstone
94.30	30.94	Sandy pelecypod grainstone and mud/grain-dominated packstone matrix
97.90	32.12	Sandy pelecypod fragment grainstone and mud/grain dominated packstone matrix
102.30	33.56	Sandy pelecypod fragment grainstone and grain-dominated packstone
105.80	34.71	Sandy pelecypod fragment grainstone and grain-dominated packstone
109.50	35.93	Pelecypod and intraclast floatstone w/sandy grainstone and mud/grain-dominated packstone matrix

Descriptions by K. Cunningham From USGS

Core G-3841		Water depth about 11 feet
Depth		Lithofacles
5.24	1.72	Cross-laminated and cross-bedded coid grainstone
11.25	3.69	Cross-laminated and cross-bedded coid grainstone
18.00	5.91	Cross-laminated and cross-bedded coid grainstone
20.71	6.79	Monastrea framestone
25.47	8.36	Coral framestone
32.66	10.72	Burrow-mottled sandy skeletal grainstone to grain-/mud-dominated packstone and skeletal sandstone
37.00	12.14	Burrow-mottled sandy skeletal grainstone to grain-/mud-dominated packstone and skeletal sandstone
40.09	13.15	Pelecypod, benthic foram grain-/mud-dominated packstone/wackestone
44.13	14.48	Porites coral bafflestone w/benthic foram wackestone matrix
49.40	16.21	Sandy skeletal, benthic foram, pelecypod sandstone
57.05	18.72	Pelecypod, rhodolith floatstone w/skeletal sandstone matrix
62.18	20.40	Sandy pelecypod, benthic foram, skeletal grain-/mud-dominated packstone
68.75	22.56	Red algal, skeletal and skeletal grainstone
75.23	24.68	Rhodolith floatstone/rudstone w/skeletal grain to grain-dominated packstone matrix
80.58	26.44	Pelecypod floatstone w/sandy skeletal grainstone matrix
85.90	28.18	Pelecypod floatstone w/sandy skeletal grainstone matrix
89.90	29.49	Sandy skeletal fragment grain-dominated packstone
96.63	31.70	Sandy pelecypod, benthic foram, skeletal grain-/mud-dominated packstone
102.21	33.53	Red algal, skeletal and skeletal grainstone
107.80	35.37	Rhodolith floatstone/rudstone w/skeletal grain to grain-dominated packstone matrix
113.38	37.20	Pelecypod floatstone w/sandy skeletal grainstone matrix
118.96	39.03	Pelecypod floatstone w/sandy skeletal grainstone matrix
124.34	40.79	Poorly consolidated skeletal quartz sandstone and sandy pelecypod fragment grain- dominated packstone
134.10	44.00	Sandy pelecypod fragment grain-dominated packstone

Core
Descriptions by
K. Cunningham
From USGS

Plain Polarized Light of thin sections

Phosphorite Grains

FIGURE 9.12 Map of the Florida peninsula showing depth to top of the Tertiary limestone artesian aquifer (in meters) and the area of recharge. Inset diagram shows a stratigraphic section along line A–A'. In the southern part of the state, the Tertiary aquifer lies below a surface aquifer in younger rocks. (Source: After Cederstrom et al., 1979.)

Conclusions

- P concentrations in the upper 10 m of the
 Biscayne Aquifer average about 50 μg P/g of rock.
- Below 10 m P concentrations in the Biscayne
 Aquifer ranged from 100 to 2500 μg P/g of rock.
- The high concentrations of P below 10 m in the Biscayne Aquifer is in the form of sand-sized grains of detrital apatite.

Processes releasing P from shallow portion (<3 m) of the Biscayne Aquifer are known. Ion CaCO₃ Exchange with dissolution HCO₃- for salinity Ocean for salinity <30 30-35 Brackish 20ne Seawater Intrusion

Additional Work

Credit: United States Geological Service, http://sofia.usgs.gov/publications/reports/rali/ images/41diagramx.jpg

Acknowledgements

- Kevin Cunningham USGS for Rock Cores, Thin Sections and Lithologic Descriptions
- Tatiania Marquez FIU for rock extractions
- Leonard Scinto FIU- P analysis
- Adriana Sanches FIU Thin Section photographs
- Florentin Maurasse FIU Apatite identifications

Florida Coastal Everglades
Long Term Ecological Research